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Where did anticipatory systems come from

● Theory of biology needs to be able to say what makes living 
systems diferent from non-living systems

● What is this “being alive” that all living systems have in 
common and all non-living things lack?
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Rosen’s (M-R) model of “simplest cell”

● A living cell is something that is energetically and materially 
open and able to maintain itself

● It has a metabolic process that converts input materials into 
everything that it needs to maintain its functional 
organization

● In other words, it has metabolism and repair

Robert Rosen, 1958. “A relational theory of biological systems.” 
Bulletin of Mathematical Biophysics, 20, 245-60. 



(M-R) systems
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“enzyme”
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f : A→B

“the thing that causes
the transformation from
A to B”



Aristotle and the causes of things
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material cause
“from what”

final cause
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eficient cause
“by what”



 

A B

“metabolic processor”

We are looking for a 
structure that causes 
itself.

“repair”



A B

… but what are the causes 
that make enzymes and 
repair the metabolic 
process?

?

“replication” of “repair”

What is the eficient 
cause for the repair 
process?

f



Let’s format a bit:

A B

“abstract enzyme”
“metabolic processor”

… we need something that 
causes the metabolic 
processors

Φ
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And we need something that causes that:

A B

f

Φ



And something that causes that:

A B Φ

H(A, B) H(H(A,B), H(B, H(A, B)))

H(B, H(A,B))

f: A → H(A, B)

f



… back to St Aquinas...
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… and so on, until 
eternity…

...until we meet the God”...

Φ



Rosen’s proof
… under stringent, but not 
too stringent conditions, 
there is a well-defined 
mathematical structure 
where every “processor” is 
caused / entailed within 
the system...

… and this is an abstract model of the simplest living cell… 

c.f. Louie, A.H. More Than Life Itself, 2009 



So far we have learned:
● To model living systems, we can use set theory and need to study the 

mappings between the sets involved
● A living thing cannot be described simply by its material components; 

you need to describe its organization
● Life becomes specified by a special type of organization
● Such a system is called “closed to eficient cause” (CLEF)
● This is the domain of relational biology:

– Physics throws away the organization, focusing on the matter. Relational 
biology throws away the matter, focusing on the organization.



Now things start to become interesting...

● The essential characteristics of biological systems cannot be 
reduced to Newtonian physics (or its quantum variant)

● Biology needs a diferent approach to physics



Rosen’s rewrite of science
● Let’s redo physics from the simplest possible assumptions:
● Proposition 1: Physics is about observable events

– “The only meaningful physical events which occur in the world are 
those represented by the evaluation of observables on states.”

● Proposition 2: Every observable can be regarded as a 
mapping from states to real numbers.

● Proposition 3: No more propositions

Rosen, Robert. Fundamentals of Measurement and Representation of Natural Systems. New York: 
North-Holland, 1978. 



We have a system with states
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The states are diferent
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How do we know which state the system is on?

Observable 1: “color”

Observable 2: “shape”
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Each possible observation 
represents a class of equivalent 
states.

If two states produce the same 
value for an observable, they  
belong to the same class.

Rosen’s Proposition 1 said that 
all physical events are 
evaluations of observables on 
states; any physical interaction 
can not know better



Diferent observables provide diferent points of view

● Observables can be totally linked, linked, or unlinked
● If the value of one observable (its equivalence class) does not restrict 

the values of another observable, the latter is unlinked from the 
former

● If the value determines the value of the other observable, they are 
totally linked (at that state)

● In general, observables are linked
– E.g., if we measure “solidness” and “temperature,” water cannot be solid if 

temperature is 100 ° C



A prototype observation: meter
● Meter is something that observes system states and 

produces a real number
● It has a reference state (m0)

● When it is brought in contact with the system, the interaction 
changes the state of the meter

σ

S → M → R



Dynamics
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Dynamics is a sequence of mappings from the set of states to this same set. (Ofen indexed by “time”.)

T: S → S  …  T
n
: S → S



Some fundamental questions:
● How can a system be fractioned into subsystems without changing the 

observables
– By dividing the original system into subsystems, we can study simpler systems 

without losing the phenomena
● If we have a full set of meters (all possible modes of interactions of the 

system), is there a “minimal” set of observables that has the same 
resolution?
– These would be called “state variables” in trad. physics. All the observables can 

be computed as functions of these.
● … and the answer is… 



Many complementary representations are needed

● Only in very special cases there is one minimal set of state 
variables that fully distinguish system states

● These are, roughly, systems where you can isolate any part of 
the system without afecting observables or dynamics
– When you keep on doing this, you get small particles called 

“atoms”
– These systems are characterized by the fact that system 

organization (linkages between state variables) does not matter



Meters change system dynamics
● In general, the evaluation of an observable changes the set of states that is 

needed to describe system dynamics
● A much larger set of states is needed, which  combines the states of the 

meter with the states of the observed system
● When the dynamics of the system is described using the original set of 

states, state variables become “uncertain” (quantum theory) or the impact 
of unaccounted interactions shows up as “probabilistic” states (statistical 
physics)

● Some important concepts in classical physics, e.g., entropy, are shown to 
be artifacts of the inadequate representation used



Complex and simple systems
● When all system descriptions can be derived from a single set 

of system variables, the system is a simple system
– Rosen calls these mechanisms

● When many irreducible sets are needed, the system is complex
● Examples of simple systems: Newtonian particle physics, 

Turing machines
● Examples of complex systems: Biological systems, anticipatory 

systems



Emergence and stability
● Assume the observation of two states produces values that are 

close to each other (remember Proposition 2: observations map 
to real numbers)

● Are the values of some other observable also close to each other?
● In other words, can two states that look the same be very 

diferent?
● In yet other words, can a small perturbation produce drastically 

diferent consequences?



No emergence in simple systems
● Dynamics creates “trajectories” from one system state to another. At one point, two 

states may look the same for one meter. (The states belong to the same equivalence 
class.)

● If they look diferent for another meter (physical interaction), the “same” state may 
change to states that belong to diferent classes.

● One original state (as seen for one observer) can transition to two diferent states, 
without any apparent cause.

● To an observer looking the first meter, this appears as acausal change and a miracle.
● In special cases, when all the observables are unlinked and you have a single 

representation of the system, you can avoid such non-causal dynamics. This is the case 
for Newtonian physics and all other simple systems.



From system states to classes of systems

● OK, now we know a lot of system states, observation and 
how systems can be represented. This is where mathematics 
shows its true force.

● We can ask similar questions about sets of systems.

Natural systems

Anticipatory systems

Living systems



Enter models
● When two systems have the same subsystem, they are 

analogs
● Two systems can share diferent types of subsystems

– Shared subset of observables, subset of dynamics, subset of states
● When the systems share a subsystem, they have a shared 

model
● A complex system is a system that has several models that are 

irreducible to each other



The modeling relation

Rosen, Robert. Anticipatory Systems: Philosophical, Mathematical and Methodological 
Foundations. Oxford: Pergamon Press, 1985. 



Anticipatory systems
● A system that contains a model of itself and / or its 

environment is an anticipatory system
● Its looks as if the future would influence its behavior
● It has many incompatible and irreducible models.
● No “maximal model” means that any simulation of its 

behavior will have errors (no algorithm or Turing machine 
can predict its behavior)



Anticipatory systems and foresight
● This means that anticipatory systems theory leads to foresight 

methods that explicitly integrate multiple models and multiple 
points of view

● Forecasting, dynamical systems models, system dynamics, 
econometric models, for example, are theoretically unable to 
model anticipatory systems

● Biological, cognitive, social, and economic systems are 
anticipatory systems; they cannot be reduced to conventional 
physics without losing their essential characteristics 



Thank you!


